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Introduction 

In this project, I apply genetic algorithms in MATLAB to several two-player repeated 

games. The games presented in the analysis are standard to the study of game theory in 

economics and include the Prisoner’s Dilemma, Deadlock, Chicken, the Stag Hunt, the Battle of 

the Sexes, Matching Pennies, Rock Paper Scissors, Choosing Sides, and a simple pure 

coordination game. A description of these games and their outcomes is provided in the Economic 

Model section. The experiments performed in this analysis use the textbook’s original setup as a 

basis for formulating and calibrating several different simultaneous games that are often 

referenced in introductory microeconomics courses and in the more technical game theoretical 

literature. I have doubled the textbook’s original population size from eight to 16 in order to 

achieve better convergence to equilibrium in the results. Although I have received only a limited 

education in the area of game theory, I thought that this pairing of the economic model and the 

computational method was quite interesting due to its simplicity and its useful contribution to 

evolutionary game theory. Additionally, the results are consistent with the basic economic theory 

of simultaneous games involving interactions between two players. 

Economic Model 

John von Neumann is unequivocally the father of modern game theory. He is best known 

for his proof of the minimax theorem—that is, an individual can minimize his or her maximum 

losses by employing a certain pair of strategies in a zero-sum game with perfect information. If 

each player employs these strategies, the strategies are optimal; John von Neumann showed that 

the players’ minimaxes are equal in absolute value and opposite in sign. Following von 

Neumann is John Nash. He is best known for his development of non-cooperative game theory 

and subsequent coining of the Nash equilibrium concept.  
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A Nash equilibrium is a solution to a non-cooperative game involving two or more 

players, where each player knows the equilibrium strategies of their opponent, but does not 

receive any gains from changing their own strategy unilaterally. The corresponding payoffs with 

these particular strategies result in a pure strategy Nash equilibrium. At the equilibrium, each 

player employs a strategy that is the best response to their opponent’s best response—a response 

that provides the most favourable outcome to each respective player given the other player’s 

strategies. As an example, in the game of Chicken, there is a Nash equilibrium at (Swerve, 

Straight). This is shown in Figure 4a. Player 2 has no incentive to switch their strategy from 

Straight to Swerve if Player 1 leaves their strategy unchanged. If Player 2 decided to swerve 

while Player 1 chose to swerve, Player 2 would stand to lose one util or dollar (depending on the 

interpretation of the payoff units). The experiment results are interpreted economically using 

these game theory concepts. The results section also comments on the role of Nash equilibria in 

the computational method applied in this model. 

Basic Game Descriptions 

In the Prisoner’s Dilemma, two criminals are arrested and brought in to a police station. 

The police admit that they cannot charge either of them on the principal charge, but can charge 

them for a lesser crime with a sentence of one year. They offer the following bargain to each of 

the prisoners: if he testifies (defects) against (and incriminates) his partner, he will go free while 

his partner will get five years for the principal charge. However, if both testify against and 

incriminate each other, both prisoners will get two years in jail. The mutually most beneficial 

action is dominated. In my formulation of the Prisoner’s Dilemma, the payoff of (Defect, Defect) 

is less than the payoff of (Cooperate, Cooperate); we can interpret this as a prisoner’s utility 

derived from a lower jail sentence. 

The Deadlock game is numerically equivalent to the Prisoner’s Dilemma except that the 

mutually most beneficial action is dominant—it is optimal and in the best interest for each of the 
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players to defect. This type of situation occurs when the two parties do not have any interest in 

cooperating with one another, but would rather have the other compromise; it may be common to 

diplomacy and international relations. 

The game of Chicken involves two individuals driving along a single-lane stretch that 

approaches a bridge; each player can swerve to avoid the other, letting them take the bridge 

alone, or keep driving straight, risking a fatal head-on collision. The best strategy for each 

individual is to keep driving straight, while the other person swerves. Therefore, the mutually 

beneficial action is to play different strategies, which results in more than one Nash equilibrium. 

The Stag Hunt differs from the aforementioned games because it contains two pure 

strategy Nash equilibria with symmetric payoffs, one that is risk dominant (when both players 

defect) and one that is payoff dominant (when both players cooperate). Formally, the game 

involves two hunters. Each hunter can individually hunt a stag or a hare. If one hunts a stag, he 

will require the other individual’s cooperation to succeed. However, if one hunts a hare, he can 

succeed on his own, but a hare is worth less than a stag. Each player must act without knowing 

the choice of the other, making this a simultaneous coordination game. 

The Battle of the Sexes game involves a couple that was supposed to meet for a night out 

at either the opera or a football game; neither can remember which event was the agreed upon 

meeting place. The husband would prefer to go to the football game, while the wife would prefer 

to go to the opera. However, both prefer to be in attendance together rather than alone. There are 

two versions of this game—Version 2 introduces a “cost” (disutility) that accounts for the fact 

that the husband and wife could each choose the event that is not their most preferred, while 

Version 1 does not. The former is called “Battle of the Sexes 2”. The two pure strategy Nash 

equilibria occur when both go to the opera and both go to the football game. 

Matching Pennies is the two-strategy version of Rock Paper Scissors. It is also 

mathematically equivalent to Odds and Evens. In this game, two individuals each have a penny. 
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Each must secretly turn the penny to heads or tails. If the faces of both pennies match, Player 1 

keeps both pennies (and gains +1); if the faces do not match, Player 2 keeps both pennies (and 

gains +1). There is no pure strategy Nash equilibrium in this game. Instead, the Nash equilibrium 

is in mixed strategies when both players choose heads or tails with equal probabilities. 

In Choosing Sides, two individuals are driving along a dirt road. One driver must swerve 

to avoid the other to avoid a head-on collision. It does not matter which side they choose, as long 

as it is the same side (both left or both right). The story that goes with Choosing Sides seems 

mathematically equivalent to the Battle of the Sexes. However, when the two individuals 

coordinate in Choosing Sides, they face an equal payoff structure. In the Battle of the Sexes, the 

two individuals prefer a certain activity to the other. Choosing Sides is also different from the 

Stag Hunt because it does not contain an activity that is “safer” than the other (i.e. one risks less 

when hunting a hare instead of a stag). As a result, Choosing Sides contains two pure strategy 

Nash equilibria that are Pareto efficient with equal payoffs. 

The pure coordination game also differs from Choosing Sides because it contains only 

one pure strategy Nash equilibrium. The two individuals in this game prefer the same Nash 

equilibrium outcome, in which the payoff is the most mutually beneficial. In its classical 

formulation, the two players can either go to a party or stay home. Both prefer going to the party 

over staying at home, and both prefer to stay at home than engage in different activities. The 

(Party, Party) outcome dominates the (Home, Home) outcome as the (Home, Home) outcome 

dominates the non-coordinating outcomes (Party, Home) and (Home, Party). 

A summary of the simultaneous game characteristics is provided in Figure 1 below. 

Games with two pure strategy Nash equilibria include Chicken, the Stag Hunt, Battle of the 

Sexes, and Choosing Sides; games with only one pure strategy Nash equilibrium include the 

Prisoner’s Dilemma, Deadlock, and the pure coordination game. Matching Pennies and Rock 

Paper Scissors do not have any pure strategy Nash equilibria; due to their zero-sum nature, these 
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games have unique Nash equilibria in mixed strategies. It should be noted that many of the 

games below are synonymous to other games, with identical outcomes but different names: the 

Diner’s Dilemma is the Prisoner’s Dilemma; the Volunteer’s Dilemma is Chicken or Hawk-

Dove; and Matching Pennies is like a two-strategy formulation of Rock Paper Scissors. This 

result allows game theorists to apply one simple model to an array of realistic examples of 

“player” interaction. 

 
Figure 1: Summary of Game Characteristics 

Game Strategies 
Per Player 

Number of Pure 
Strategy Nash 

Equilibria 

Pure Strategy 
Nash Equilibria Sequential Perfect 

Information Zero Sum 

Prisoner's Dilemma 2 1 (D, D) = (1, 1) No No No 
Deadlock 2 1 (D, D) = (2, 2) No No No 

Chicken 2 2 (D, C) = (6, 2) 
(C, D) = (2, 6) No No No 

Stag Hunt 2 2 (C, C) = (2, 2) 
(D, D) = (1, 1) No No No 

Battle of the Sexes 
1 & 2 2 2 (O, O) = (3, 2) 

(F, F) = (2, 3) No No No 

Matching Pennies 2 0 N/A No No Yes 
Rock, Paper, 

Scissors 3 0 N/A No No Yes 

Choosing Sides 2 2 (L, L) = (1, 1) 
(R, R) = (1, 1) No No No 

Pure Coordination 2 1 (P, P) = (2, 2) No No No 
 

Computational Method 

Chapter 11 of Kendrick (2006) applies genetic algorithms to the study of evolutionary 

game theory. The textbook uses the Prisoner’s Dilemma as an example game to simulate one-

shot (repeated) games between two individuals; the game is repeated 24 times and the population 

consists of eight individuals, so each player plays the other seven players 24 times. For the 

purpose of easy convergence to equilibrium, I have increased the population size to 16 in my 

experiments. Additionally, I have modified the game loops in the MATLAB code to reflect the 

different payoff structures in each game. Genetic algorithms are search procedures and/or 
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heuristics that mimic the process of natural selection and genetics; the rules of Darwin’s 

“survival of the fittest” apply to this model in which individuals compete with one another and 

the fittest individuals form a couple in order to give birth to the next generation. 

The genetic algorithm presented in these models is quite realistic in that it makes use of 

inheritance, mutation, crossover, and selection. Inheritance is evident in this model when the 

chromosome, containing a string of genes, for each individual in a population may contain 

similar genes to individuals in the populations from previous generations/runs. The mutation and 

crossover operations also provide a simple representation of those that can be found in the 

human race. Selection in the genetic algorithm is achieved by selecting the “best fit” agents in 

the population—here; the “best fit” strategies are the ones with the highest payoffs. In order for 

the genetic algorithm to begin, the genetic representation (the number of genes in each 

chromosome) and fitness function need to be defined. After this, the genetic algorithm can 

proceed to the following steps before finding a global optimum: initialization (generation of the 

initial population given some deterministic or stochastic criteria), selection (again, given 

deterministic or stochastic criteria), genetic operators (rate of mutation and the crossover 

method), and termination (when the algorithm finds the local or global optimum). 
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Experiments 

My formulation of the different simultaneous games acts as more of a calibration exercise 

than an experiment; however, I think that this is still a useful extension to the economic and 

computational model because it allows me to compare the convergence to the equilibrium 

outcomes (if any) in each game. There are two main experiments carried out using the genetic 

algorithm. The first extends the number of runs to 500 for games that fail to converge in 100 

runs. The second uses a deterministic method to initialize the population (as opposed to a random 

one) in order to start with a population consisting entirely of co-operators (a binary string of 24 

ones); this requires changing the gene pool equation from genepool (k1) = ceil (rand*(2^clen)-1) 

to genepool (k1) = (2^clen)-1 in the initpoprand_gagagme.m file.  

The first experiment is carried out on Matching Pennies and Rock, Paper, Scissors and 

the second experiment is conducted for the Prisoner’s Dilemma, Deadlock, Chicken, and the 

Stag Hunt. Payoff matrices, graphs representing the fittest strategies, and a preliminary 

description of the computational results are provided in the results section; a more detailed 

analysis relating the economic theory to the model is provided in the Discussion section. 

Generally, the strategy in the first column (Cooperate) of the payoff matrix corresponds to a one 

in the chromosome string, while the strategy in the second column (Defect) corresponds to a zero 

in the chromosome string. In each game and experiment, the population size, chromosome 

length, and probability of mutation are held constant at 16, 24, and 0.7, respectively. 

Results 

Prisoner’s Dilemma 

Figure 2a 

  
Player 2 

  
C D 

Player 1 C 3, 3 0, 5 
D 5, 0 1, 1 
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Figure 2b 

Random Initial Population 

  
Deterministic Initial Population 

  
 

As can be seen from Figures 2a and 2b, the prisoner’s dilemma formulation of the game 

converges to equilibrium around 15 runs/generations. The fittest strategy converges to zero, 

while the fitness of the fittest strategy converges to a payoff of one, indicating that the best 

strategy is for all players to defect (evidently, the Nash equilibrium). The results also show the 

fittest strategy and the fitness of that strategy when the initial population consists entirely of 

cooperators. It is interesting that even when the population consists entirely of cooperators, the 
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fittest strategy still converges to defection, albeit more slowly (at around 20 runs) than under the 

randomized initial population. 

Deadlock  

Figure 3a 

  
Player 2 

  
C D 

Player 1 C 1, 1 0, 3 
D 3, 0 2, 2 

 
Figure 3b 

Random Initial Population 

  
Deterministic Initial Population 
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Figure 3b shows the convergence to the fittest strategy for the Deadlock game. Unlike in the 

Prisoner’s Dilemma, the strategy converges to defection almost immediately, after about five 

runs. It seems that because the Nash equilibrium strategy is also the most mutually beneficial 

outcome, subsequent generations are able to adapt their strategies relatively quickly. When the 

initial population is generated deterministically instead of randomly, consisting entirely of 

cooperators, the fittest strategy reaches convergence after a larger number of runs, as is evident 

in the Prisoner’s Dilemma. 

Chicken 
 
Figure 4a 

  
Player 2 

  
Swerve Straight 

Player 1 Swerve 5, 5 2, 6 
Straight 6, 2 1, 1 
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Figure 4b 

Random Initial Population 

  
Deterministic Initial Population 

  
 

The fitness of the fittest strategy under the chicken game does not converge to any stable 

equilibrium. There are persistent mutations at all generations of the model under the randomly 

and deterministically initialized populations. However, the strategy does tend to bounce around 

the 1.5 to 2.0 neighbourhood (as can be seen in the top and lower right panels) which is 

somewhat consistent with the presence of two Nash equilibria in the chicken model—one at 
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(Swerve, Straight) and one at (Straight, Swerve). It seems that a mixed strategy for each of the 

players is the best response. 

S tag Hunt 
 
Figure 5a 

  
Player 2 

  
Stag Hare 

Player 1 Stag 2, 2 0, 1 
Hare 1, 0 1, 1 

 
Figure 5b 

Random Initial Population 

  
Deterministic Initial Population 
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The convergence to the fittest strategy in the Stag Hunt game is relatively more stable; there is 

only one significant mutation present at 70 runs. Under the randomized initial population, the 

fitness of the fittest strategy is 1.5, indicating that the payoff to each individual is equal to the 

average payoff between the two Nash equilibria [i.e. E (payoff) = 0.5(2) + 0.5(1) = 1.5]. In the 

deterministic initial population simulation, the fittest strategy is for both parties to cooperate. 

This result is not surprising as it reflects the theoretical basis of the Stag Hunt: if the players start 

the game cooperating, they have no incentive to defect because they will only receive a payoff of 

either zero or one. 

Battle of  the Sexes 
 

Figure 6a 

Battle of the Sexes 1  Battle of the Sexes 2 

  
Husband    Husband 

  
Opera Football    Opera Football 

Wife Opera 3, 2 0, 0  
Wife Opera 3, 2 1, 1 

Football 0, 0 2, 3  Football 0, 0 2, 3 
 

Figure 6b 

Battle of the Sexes 1 
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Battle of the Sexes 2 

  
 

The results from both formulations of the Battle of the Sexes are inherently similar. The only 

difference between these two games is the cost associated with the husband and wife choosing a 

meeting location that is not their first preference. Because of this “added cost” in the Battle of the 

Sexes 1, with a payoff structure of (0, 0) at (Opera, Football), the fitness of the fittest strategy 

converges more slowly than that of the Battle of the Sexes 2. The fitness converges at around 

eight runs in version 1 and around four runs in version 2 of this game. 

Matching Pennies 
 
Figure 7a 

  
Player 2 

  
Heads Tails 

Player 1 Heads 1, -1 -1, 1 
Tails -1, 1 1, -1 
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Figure 7b 

Number of Runs = 100 

  
Number of Runs = 500 

  
 

The results from the Matching Pennies game are somewhat more interesting. Because this game 

is absent of any pure strategy Nash equilibria, a fittest strategy is never obtained, even after 500 

runs. It is also interesting to note that, because this game is also a zero-sum game, the fitness of 

the fittest strategy immediately converges to zero in both the 100 and 500 run simulations. This 

result is consistent with each player opting for a mixed strategy approach, choosing Heads or 

Tails with equal probability.  
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Rock , Paper, Scissors 
 
Figure 8a 

  
Player 2 

  
Rock Paper Scissors 

Player 1 
Rock 0, 0 -1, 1 1, -1 
Paper 1, -1 0, 0 -1, 1 
Scissors -1, 1 1, -1 0, 0 

 

Figure 8b 

Number of Runs = 100 

  
Number of Runs = 500 
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The results from Rock, Paper, Scissors are almost identical to those from Matching Pennies. This 

is because Rock, Paper, Scissors is the three-strategy version of Matching Pennies, thus, 

containing the same game characteristics—a zero-sum game with no pure strategy Nash 

equilibria and players employing a mixed strategy approach. 

Choosing S ides 
 
Figure 9a 

  
Player 2 

  
Left Right 

Player 1 Left 1, 1 0, 0 
Right 0, 0 1, 1 

 
Figure 9b 

  
 

The results for the Choosing Sides game are somewhat trivial. As mentioned in the game 

descriptions earlier, this game only requires the two players to choose the same action—both 

Left or both Right—which results in two pure Nash equilibria. The decimal representation of the 

chromosome of the fittest individual is shown in the first graph; the results indicate that the fittest 

individual employs a mixed strategy, as the chromosome representation does not converge to 

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107 Fittest Strategy

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Fitness of Fittest Strategy



18 

zero. In the second graph, we see that the fitness of this strategy converges to one, which reflects 

the payoffs at the two equilibria. 

Pure Coordination 
 
Figure 10a 

  
Player 2 

  
Party Home 

Player 1 Party 2, 2 0, 0 
Home 0, 0 1, 1 

 
Figure 10b 

  
 

The final simulation in this analysis models a pure coordination game. Two individuals need to 

decide if they should go to a party or stay home. This game contains two Nash equilibria: one at 

(Party, Party) and one at (Home, Home). Since each individual would rather go to the party than 

stay home, the (Party, Party) outcome dominates the (Home, Home) outcome. The presence of 

these two Nash equilibria can be seen in the second graph. The fitness of the fittest strategy 

converges to 1.5, which represents the individual’s average payoff in the presence of two Nash 

equilibria—that is, E (payoff) = 0.5(2) + 0.5(1) = 1.5.  

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 106 Fittest Strategy

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Fitness of Fittest Strategy



19 

Discussion 

Results and Economic Model/Computational Method 

As is evident in the results presented above, modeling different games with a varying 

number of Nash equilibria and corresponding “payoffs” or agent utility is particularly useful in 

analyzing the path and time of strategy convergence. We can see that if a game contains two pure 

strategy Nash equilibria, the path to convergence, as portrayed in the “Fittest Strategy” graphs, is 

significantly more volatile than in games with only one Nash equilibrium. We can also see that 

the fitness of this fittest strategy (the corresponding payoffs) tends to bounce between a specific 

range, indicating a mixed strategy approach from the players. This type of model behaviour is 

simulated in Chicken, the Stag Hunt, the Battle of the Sexes, Choosing Sides and the pure 

coordination game.  

When the game contains only one Nash equilibrium, as is the case of the Prisoner’s 

Dilemma and Deadlock, the path to convergence in the strategy (defection) is more immediate. 

Additionally, the fitness of this strategy quickly reduces to the corresponding matrix payoffs; for 

example, the fitness of the fittest strategy quickly reduces to one in the Prisoner’s Dilemma and 

two in Deadlock. When the game does not contain a Nash equilibrium, we can see that a “fittest 

strategy” is not identified—the graph of the fittest strategy has several large deviations. This type 

of game is modeled in Matching Pennies, or equivalently, in Rock, Paper, Scissors. 

It seems that the formulation of the genetic algorithm has a strong influence on these 

results. With each successive run, the “best fit” individual and corresponding chromosome string 

survives simply because of its arbitrary fitness level (determined initially by the randomization 

of the population and the binary representation). Since a player’s actions are determined 

regardless of their opponent’s actions, the model simulates a situation in which it is in the best 

interest of each individual agent to maximize their own payoff and ignore the most mutually 

beneficial outcome. The introduction of chromosome crossover and mutation seem to have little 
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influence on maintaining a population of co-operators, unless the initial population consists 

entirely of co-operators. 

A dvantages and L imitations (of  genetic algorithms in general) 

Advantages 

Genetic algorithms can solve a wide range of optimization problems as long as the 

problem can be described over the “chromosome” encoding. Depending on the deterministic or 

random aspects of the model, there may be several solutions to one problem, which provides 

practitioners with many alternatives (but which could be seen as a disadvantage to some 

researchers). There are many other advantages of genetic algorithms that allow for ease of 

implementation: the problems applied to GAs can be multidimensional, non-differential, non-

continuous or non-parametric; bad proposals/solutions in the population are not an issue since 

the algorithm is capable of discarding them; and the algorithm itself does not need to know the 

rules/constraints of the problem, a feature which is particularly useful for loosely defined or 

complex problems. 

Limitations 

One of the limitations of genetic algorithms is that they must use approximated fitness 

levels to allow for computational efficiency. However, it has been found that the amalgamation 

of several models with approximated fitness is still promising. Sometimes when the convex 

problem is broken up into small parts, and these parts have become evolved, it is difficult to 

prevent them from mutation especially if they are required to combine well with other parts. For 

example, when designing a floor plan or an engine, it may be feasible to use genetic algorithms 

to generate shapes or design fan blades, but not to design the entire structure of these items with 

one algorithm. Additionally, the termination criterion is not clear in every problem since the 

“best” solution only seems “best” when compared to the other surrounding solutions. 
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Specifically, in convex problems, the algorithm may get stuck in a local optimum instead of 

reaching a global one; it does not know how to sacrifice short-term fitness for long-term fitness. 

Further Research 

As the games presented in this analysis are only one-shot (simultaneous) games, it would 

be particularly interesting for game theory empiricists to model a sequential game, such as chess, 

backgammon, tic-tac-toe, or Go. It would also be possible to model a simple, two-player 

interaction game that consists of only two strategies: left and right. This type of game is provided 

as an example in the introductory game theory portion of ECON 452 (Information and 

Incentives). We used a decision tree with Player 1 as the “leader” and Player 2 as the “Follower” 

to find the subgame perfect Nash equilibrium and the non-credible threat. In reference to the 

game of Chicken, an example of a non-credible threat involves one of the drivers ripping the 

steering wheel from their car. This action does not result in a credible threat since the wheel-

ripper’s opponent can always swerve knowing that the other has removed their steering wheel 

and cannot possibly swerve. Although the player that has not yet removed their wheel has that 

option, it is not a credible threat since it would require harming themselves, preventing the 

combination of strategies (Straight, Straight). 

Future researchers may wish to model the games presented here in a neural network 

representation. They may also wish to model “learning” in the agents’ behaviour, as well as more 

complex social interactions between the players with family, friends, or neighbours. As 

mentioned in Kendrick (2006), including strategic thinking and behaviour—when a player’s 

actions are reactions to the opponent’s past actions—in the players would not result in a 

population of all defectors; the fittest strategy may converge to a population of all co-operators 

or show complex cyclical behaviour. 

  



22 

Appendix – MATLAB Code 

Generation of Initial Population, Number of Runs, and Mutation Rate: 

 

For 500 runs: 

 

The fitness files were modified for each game (PD is Prisoner’s Dilemma): 
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With the population of all co-operators, the initpoprand_gagame_COOP function 
is substituted into the original code: 
 

 

 

Loops for the different games: 

Prisoner’s Dilemma Deadlock 
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Chicken Stag Hunt 
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Battle of the Sexes 1 Battle of the Sexes 2 
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Matching Pennies* (100, 500) 

 
 

*This code is modified for the Rock, Paper, Scissors game. They are essentially identical. 
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Choosing Sides Pure Coordination 

  
 

 


